Get in touch today to discuss your requirements
Call: (+44) 01452 523352
The trailer industry relies heavily on hydraulic power for a range of applications be it car trailers, livestock or heavy machinery transportation. This is primarily because of the proven reliability and strength of hydraulic systems as well as their ease of operation and user friendliness.
As trailer applications use hydraulics in different ways, we have provided a breakdown of some common types of these below:
Plant trailers
Having to operate in a range of environments, plant trailers are the first choice for transporting construction grade machinery such as diggers and other machinery.
The hydraulic tilt mechanism allows a low approach angle for loading and have advantages over other types of plant loaders as they can cater for plant vehicles with low ground clearance.
Typically available in a range of different styles including all-purpose trailers with a single axis which are suitable for agricultural and building machinery and for vehicles weighing over 3.5 tonnes, twin axle, auto tilt platform trailers are commonly used. Custom made tippers are available that cater for alternate platforms such as scissor lifts.
Regarding the operation of the trailer, the trailer deck typically extends backwards, initiating the lowering of the tailboard which locks on a horizontal plane. This enables the body to balance above the pivot point, which can then be angled allowing the machine to be moved on to the trailer. The pump valve can be closed off to allow the body to remain in a raised position in order to load other items; re-opening of the valve will then lower the body. The body is released when unloading so the tailboard will lower allowing the machine to be loaded up on to the ramp and the body will then tilt, using hydraulic damping, and the machine can be driven back off.
Car transporters
Coming in a variety of sizes and shapes, car transporters are typically enclosed units that protect their contents from the outside environment are and a popular solution for those wanting to transport vehicles around the country or cross continent. They provide a working platform for any owner and the low bed chassis they typically come with provides a stable and safe towing base.
They commonly feature a hydraulic-tilt bed operation, together with a loading ramp/door and popular materials used in their construction include steel and aluminium. Some specifications also include remote control electric winches and various loading and securing equipment as optional extras with the package to aid in getting the vehicle on-board.
Commercial tipper trailers
These units are primarily used to carry commercial and agricultural materials and are found in abundance in the construction industry where they are regularly seen tipping earth, bricks, mortar and other materials.
The trailers are built to have a high clearance for site access but also a low centre of gravity for optimal loading and towing performance. They have a solid and robust build due to the weights of materials they carry on an almost daily basis, and come with a single function high tilt mechanism which allows approximately 60° of tilt to ensure that any materials contained will disperse successfully.
A hydraulic power pack is typically installed in front of the hydraulic arm within a protective case and a pendant hand controller controls the tilt operation of the trailer.
Suppliers of these units comply with health and safety regulations by installing audible warning systems when the trailer bed it raised and lowered to enable operators to work safely and effectively.
Hydraproducts supplies a range of DC power packs complete with 12 or 24VDC Motors containing single and double acting valves primarily for use in tipper applications As well as manufacturing the power packs themselves, Hydraproducts are also able to tailor their design for a bespoke fit to the majority of applications using state-of-the-art 3D modelling technology.
2019 Update – With the construction industry in full flow and new building projects appearing all over the country, our popular Hydraulic DC Mini Tipper Packs are as popular as ever in the industry, thanks, in part to their compact build, versatility and their E11 and VCA (Vehicle Certification Agency) approval.
Hydraulic Tipper applications benefit greatly from programmable hand controllers, which aid in the lifting process and enable you to customise lift control functions. Hydraproducts new HP-3 handsets are fully programmable and offer 12.24V DC operation.
Having to operate in a range of environments, plant trailers are the first choice for transporting construction grade machinery such as diggers and other machinery. The hydraulic tilt mechanism allows a low approach angle for loading and have advantages over other types of plant loaders as they can cater for plant vehicles with low ground clearance.
A hydraulic power pack is typically installed in front of the hydraulic arm within a protective case and a pendant hand controller controls the tilt operation of the trailer. Suppliers of these units comply with health and safety regulations by installing audible warning systems when the trailer bed it raised and lowered to enable operators to work safely and effectively.
-------------------------------------------------------------------------------------------------------------------------
Hydraproducts supplies a range of DC power packs complete with 12 or 24VDC Motors containing single and double acting valves primarily for use in tipper applications.
As well as manufacturing the power packs themselves, Hydraproducts are also able to tailor their design for a bespoke fit to the majority of applications using state-of-the-art 3D modelling technology.
In this article we want to explain the ins and outs of hydraulic powerpacks. A vital piece of equipment that is used with so many machines we see every day. In a nutshell, hydraulic powerpacks are self contained units that are used instead of a built in power supply for hydraulic machinery. Hydraulic power uses fluid to transmit power from one location to another in order to run a machine. It really is as simple as that. So what do they look like? In order to recognise and better understand hydraulic powerpacks, it is a good idea to get to know the key components. Hydraulic powerpacks come in many different shapes and sizes, some are very large and stationary whereas others are much smaller and more compact. In fact, some hydraulic powerpacks are so compact that they can easily be transported in a small van or even an estate car. The only real way to identify hydraulic powerpacks is through its main components. No matter the size of the unit, all power packs will have the following; a hydraulic reservoir, regulators, a pump, motor, pressure supply lines and relief lines. What do these components do? It may be obvious to some but in this post we wanted to explain every hydraulic power pack component as simply as possible. So here goes. First up is the hydraulic reservoir which quite simply holds the fluid. Reservoirs will come in different sizes. Then we have the regulators. Regulators are vital as they control and maintain the amount of pressure that the hydraulic powerpack delivers. Thirdly we have the pressure supply lines and relief lines. The supply line simply supplies fluid under pressure to the pump and the relief lines relieve pressure between the pump and the valves. The relief lines also control the direction of flow through the system. Finally we have the pump and a motor. We will begin with the simpler component of the two, the motor. The motor is simply there to power the pump. Easy as that. Now the pump generally performs two actions. Firstly, it operates as a vacuum at the pump inlet and through atmospheric pressure forces fluid from the reservoir into the inlet line and then to the pump. It then delivers the fluid to the pump outlet and pumps it into the hydraulic system. We did warn you that the second part would be slightly more confusing. So what is the function of hydraulic powerpacks? Hydraulic powerpacks deliver power through a control valve which in turn runs the machine it is connected to. Hydraulic powerpacks come with a variety of valve connections. This means that you can power a variety of machines by using the appropriate valves. Hydraulic powerpacks are relied upon by a range of different machines that use hydraulic power to do its work. If a machine is required to carry out heavy or systematic lifting then its likely it would need help from a hydraulic powerpack. To make it easier for you to understand, we have included a list of trades that regularly rely on our powerpacks. On a building site you will see machines like bulldozers and excavators, which both need hydraulic powerpacks. But, it is not just on building sites that you will find these types of machines. Fishermen and mechanics both need hydraulic powerpacks too. If we did not have them then how would fishermen lift their nets or how would mechanics lift our cars? When picking a hydraulic powerpack there are a variety of pumps and options to pick from and it is important to pick the right pack to meet your machines needs. It is also important to consider a pack that will help maximise productivity and minimise cost. Many people will overlook the necessity of hydraulic powerpacks, but they really are vital to ensuring our society runs efficiently. Do you need to maintain hydraulic powerpacks? Yes you do and this is hugely important! Hydraulic powerpacks require regular maintenance to ensure they are working properly and safely and to help extend their life. Maintaining hydraulic powerpacks is relatively simple and includes checking the tubing, this can be for any noticeable problems such as dents or cracks. It is also vital to regularly change the hydraulic fluid and look at the reservoir to check for any corrosion or rust in hydraulic power packs. What hydraulic powerpacks do we provide? Generally we provide four different types of hydraulic powerpacks. You can pick from a standard powerpack, a mini powerpack, a micro powerpack or a bespoke powerpack. The standard hydraulic powerpack uses a standard range of modular components and is ideal for the most demanding industrial applications. The mini powerpack is ideal for applications requiring up to 5.5kW. The micro hydraulic powerpacks were originally produced for mobility applications, so are great for when space is limited. Finally, if none of these seem to fit your needs then we offer bespoke hydraulic powerpacks ensuring your application gets the hydraulic powerpack it requires. Finally, who is the genius behind hydraulic powerpacks? The man behind hydraulics was Laissez Pascal. A French mathematician, physicist and religious philosopher who lived in the mid seventeenth century. Pascal made observations about fluid and pressure which led to Pascal’s law. Pascal's law states that when there is an increase in pressure at any point in a confined fluid, there is an equal increase at every other point in the container. Hydraulic powerpacks have been designed based on Pascal's law of physics, drawing their power from ratios of area and pressure.
So, interested in our Power Packs? Come on over to the main website and see what we can do for your Hydraulic Power Pack Needs .
Hydraulics has been around for a very long time. But are you aware of how far it has actually come? You wouldn’t be alone if you responded with no. It is a very technical subject that can be quite difficult to understand, but in this article we want to tell you the story of hydraulics! We want to share with you who discovered hydraulics, what it was originally used for and how hydraulic power got to where it is today. So why don’t we start at the beginning! Where does the word hydraulic come from? The word hydraulic originates from the Greek word ‘Hydros’ which means water. Why water? Well, this is because water was the first liquid to be used in the hydraulic system. Today, hydraulics includes the physical behaviour of all liquids, not just water.
10 Applications for Hydraulic Power Units
Hydraulic power units are used in many industries. They provide the power behind a well run hydraulic system and can be found in the most surprising of places.
With a motor, a hydraulic pump and a reservoir, it’s surprising what can be achieved.
You can expect to find hydraulic systems used in the following:
· Meat processing machinery
· Mobile construction and road work equipment
· Test equipment in the aerospace industry
· Material handling in road engineering, construction and mining
· Agricultural equipment
· Military and government operations both nationally and abroad
· Oil field and oil clean up equipment
· Theatrical and television production equipment
· Medical equipment
· Industrial processing equipment
Wherever heavy and systematic lifting is required, hydraulic power can be used. Hydraulics are ideal for the repeated use of powerful and/or directional force.
Hydraulic units are at work in the most everyday of things. For example, you may drive past a construction site and if you see a bulldozer, digger or dumper you will see hydraulics at work.
Fishermen use hydraulics to lift their pots and nets from the sea. Even a car mechanic uses hydraulics to change a tyre and to lift the car in order to make repairs to it. The brakes of a car uses hydraulics in order to stop. They have now become such an integrated part of our society that we don’t even notice how much we rely on them to keep our world running smoothly!
Hydraulics have been used since ancient times in Egypt and China around the year 6000BC. They were further refined by the Greeks and have been used for many different solutions including aqua ducts and water towers.
To find out more about how you can use hydraulic power packs for in your industry contact our sales team.
Hydraulic pumps, one of the more common mechanical applications of hydraulic technology, use fluid to push an arm a set distance forwards and backwards (or up and down). One example is the mechanical arms of a digger or other ground-working machinery. A hydraulic pump is perfect for this use, as the machinery works using the set distances between the components of the arms.
A hydraulic gear motor uses fluid to power movement for a much longer distance (or to put it another way, for an unspecified length of time). The motor works by running fluid through a chamber containing two cogs. One is linked to the drive shaft and transfers the power to the component that needs to move, and the other is idle, existing only to complete the mechanism. The same fluid is pumped through the motor chamber for as long as the power is needed, and it works in a similar fashion to an electric motor, but is much smaller and can be used in places where electricity is not safe or viable to use. It is a natural development of the waterwheel that was commonplace in the UK during the Industrial Revolution, powering cotton mills, woodworking and even bellows for blacksmiths forges.
A hydraulic gear motor is more appropriate than a pump for any piece of machinery that needs continuous power in a simple mechanism; a series of hydraulic pumps, arms and cogs can be used to create continuous power, but the resulting apparatus is bulky and made up of several components, which increases the likelihood of mechanical failure. A hydraulic motor, by comparison, can be very small and portable, meaning it is ideal for any application that is a long distance from traditional power sources and remote areas of the planet where other forms of energy are not viable. They are also reasonably simple in construction, so parts and maintenance are not an issue.
Hydraulic motors are ideal for use underwater and in dangerous places like mines and gas works, where the spark from an electric or petrol motor poses a serious fire risk. They are also good for any task where the motor is operated remotely, as the fluid can be pumped a long distance to the motor using comparatively little power and the only connection needed is piping, compared to more expensive electrical cable for running a remote electric motor. What is the most ingenious application of a hydraulic motor you have ever seen? Let us know in the comments below.
How to read hydraulic circuits
Hydraulics symbols are an essential component of hydraulic circuit diagrams. Knowing some of the basic principles will help understand a wider range of symbols. Explaining the common ISO1219 symbols enables a complete hydraulic system to be followed:
1. Hydraulic Pump
Hydraulic pump produces flow. Oil is pumped from the hydraulic reservoir into the system. The basic symbol for a pump:
A fixed displacement pump is the simplest type and has a fixed output for each revolution of the input shaft. Modifications to this symbol describe the variable displacement pump. The types of control circuits show how the output is varied.
2. Filter
Filters clean oil entering the system, and are used in various places within a system. They protect hydraulic valves and pumps. Suction filters are placed at pump inlets to ensure only clean oil enters the system. Pressure filters can be placed throughout system. Return filters are common and filter oil returning to the reservoir.
3. Pressure Relief Valve
Pressure in a hydraulic system should be limited to control the force any motive devices produce and to ensure the safe/design limits are not exceeded. A pressure relief valve symbol is normally shown as:
A pressure relief valve or PRV passes fluid from an area of higher pressure to a lower pressure (typically the tank). Hydraulic pressure shown by the dotted line acts as a pilot to actuate the PRV by moving the arrow across the box. This happens when the pilot pressure produces an internal force equal to the spring load the valve begins to open and pass flow.
4. Check Valve
This valve is a one way valve that prevents flow in one direction. The addition of a spring ensures the valve will only open when this pressure is exceeded. Dotted pilot lines can be added so that pilot operating pressures can be used to open the valve and allow flow in the reverse direction. Commonly used to hold pressure in a hydraulic cylinder.
5. Hydraulic Reservoir (tank)
Hydraulic systems all have a means of storing hydraulic fluid. This is referred to as the hydraulic reservoir. Hydraulic reservoirs are shown as:
Vented hydraulic reservoirs are common place, but sealed systems can be found ion aerospace and marine applications. The return lines shown indicate the position above or below the oil level.
6. Directional Control Valve
Hydraulic fluid flow is controlled by a directional control valve. Commonly consists of four parts, valve body, spool, actuator, and springs. The spool is moved with respect to the valve body, this opens and closes internal flow galleries to control fluid flow. Various types of actuators provide power to shift the spool and springs are normally used to return the spool when the actuator is de-energised.
Look at the typical three position four way valve:
How to read directional control valve symbols:
a. Each box in the valve symbol represents a possible valve condition. In the three position valve above there are 3 possible conditions controlled by the actuators.
b. Number of ways tells you how many hydraulic connections could be connected to the valve.
c. Actuators always push and never pull the spool.
d. The box furthest away from the actuator is the normal or de-energized position, and is the position where the circuit connections are drawn. In the above valve this is the middle position.
7. Hydraulic Cylinder
Hydraulic cylinder or actuator uses hydraulic power to generate mechanical force. A hydraulic cylinder is shown as:
A double acting cylinder (above) has two ports and is therefore powered in and out. Single acting cylinders have one port and would typically be used for lifting applications.
We hope this gives you a useful introduction to hydraulic circuits. For a full list of hydraulic symbols can be found in ISO1219, or contact www.hydraproducts.co.uk for more help.
Hydraulic Power Pack
About Us.
Connect with us
Connect with us on social media or eBay