GROUP 2 PUMPS

GEAR HOUSING
Extruded in aluminium alloy

DRIVE SHAFTS
Choice of several standard drive shafts

BEARINGS
Hi-resistant aluminium alloy with DU sleeve bearings to offer high performances.

MOUNTING FLANGES
Choice of several mounting flanges in cast iron

COVER
Made in cast iron material and available with suction port

GEARS
Designed specifically to reduce the noise level and offer the best performance between flow pulsation and displacements
GROUP 2 PUMPS

CONSTRUCTIVE CHARACTERISTICS:

<table>
<thead>
<tr>
<th>PART</th>
<th>MATERIAL</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEAR</td>
<td>Hardened steel UNI 7846</td>
<td>Rs = 1250 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rm = 1450 N/mm²</td>
</tr>
<tr>
<td>FLANGE AND COVER</td>
<td>G25 / G30 cast iron</td>
<td>Rs = 300 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rm = 450 N/mm²</td>
</tr>
<tr>
<td>BEARING</td>
<td>Avional Bearings with DU</td>
<td>Rs = 350 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rm = 390 N/mm²</td>
</tr>
<tr>
<td>BODY</td>
<td>Extruded in aluminium</td>
<td>Rs = 350 N/mm²</td>
</tr>
<tr>
<td></td>
<td>Series 7020</td>
<td>Rm = 390 N/mm²</td>
</tr>
<tr>
<td>O-RINGS</td>
<td>Buna N</td>
<td>90 Shore, up to 90°C</td>
</tr>
<tr>
<td></td>
<td>Viton</td>
<td>80 Shore, for high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temperature</td>
</tr>
<tr>
<td>ANTIEXTRUSION</td>
<td>Zitel</td>
<td>With glass fibres</td>
</tr>
</tbody>
</table>

Rs = Enervening load
Rm = Breaking load

GENERAL CHARACTERISTICS:
Maximum pressures up to 300 bar.
Weight: from 3.1 Kg to 4.3 kg
Maximum speed up to 4,000 rpm.
Type of shafts: Taper 1:8 and 1:5
Oldham
Millen DIN 5482 17x14,
SAE A splined 8 teeth
SAE A cylindrical - #15.65
Type of flanges:
European standard
German standard
SAE A standard.
Displacements from 4 cc/rev to 30cc/rev.
The displacements are available according this table:

![Displacement Table]

There is also available a special version with built-in support.

DRIVE:

The connection of the pump to the motor must be done preferably with the use of a flexible coupling to avoid any radial and/or axial force on the shaft, otherwise pump efficiency will dramatically drop due to early wear of inner moving parts.
In any applications where the motion is transmitted through belts, it is necessary to use a support to avoid any radial or axial load to the pump shaft.
In any applications where are used splined shafts of Oldham couplings, it is suggested to assure a constant lubrication through grease or similar products.
GROUP 2 PUMPS

WORKING CONDITIONS- LIMIT PERFORMANCES
In normal working conditions there must be, in the suction pipe, a pressure lower than the atmospheric pressure. The pressure range in suction must be:

| Min. 0.75 bar (absolute) | MAX 2.0 bar (absolute) |

The maximum pressure values "P1" are referred to a continuous working at 1500 rpm with standard hydraulic fluids with minimum viscosity of 10 cSt.
For heavier working conditions (viscosity or high temperature) it is necessary to reduce the "P1" values.

In the following table are described the admitted pressures:

\[
\begin{align*}
P (\text{bar}) & \quad & P_3 & \quad & P_2 & \quad & P_1 \\
\text{Max. 20s} & \quad & \text{Max. 8s} & \quad & \\
\end{align*}
\]

- \text{P3 Maximum peak pressure.}
- \text{P2 Maximum intermittent pressure.}
- \text{P1 Maximum continuous pressure.}

The standard working speeds (minimum and maximum) are the following:

| Min. = 400 rpm | Max = (See following table) |

DIRECTION OF ROTATION LOOKING AT THE SHAFT:

- \text{Right rotation}
- \text{Left rotation}
GROUP 2 PUMPS

FLUID FILTRATION
It is known that in many cases the premature pump performance reduction is due to a non correct filtration in the circuit.
The presence of contamination particles in the fluid usually corresponds to an irreparable wear of the pump internal parts.
It is recommended to pay attention to the plant cleaning, mainly in the starting activity.
The starting fluid contamination must be according to the Norms ISO 4406 and it should not exceed the Class 19/16 with a filter 3x75.

Here below the technical parameters to respect:

FILTRATION IN SUCTION LINE	30 / 60 Nominal micron
FILTRATION IN PRESSURE LINE	10 / 25 absolute micron
MAXIMUM SPEED IN SUCTION	0.5 / 1.5 m/s
MAXIMUM SPEED IN OUTPUT	3.0 / 5.5 m/s

Sometimes (contaminated places) it is recommended to improve the filtration in pressure line and fit also an air filter.

HYDRAULIC FLUIDS
It is recommended the use of fluids made for hydraulic circuits.
Usually they are hydraulic oils with mineral basis HLP HV (DIN 51524).
Here below the technical parameters to respect:

MINIMUM VISCOSITY	10 mm²/s
MAXIMUM VISCOSITY	100 mm²/s
SUGGESTED VISCOSITY	20 mm²/s / 100 mm²/s
SUGGESTED TEMPERATURE	30°C / 50°C
WORKING TEMPERATURE	-15°C / +80°C

For applications with water-glycol (HF-C) it is recommended to consider the following limitations: 1500 rpm maximum speed and 200 bar maximum pressure.
For applications with phosphate ester fluids, please contact our Technical department.

INSTALLATION INSTRUCTION
During the first starting it is recommended:
- to set the maximum pressure relief valves to a low value and gradually increase the pressure.
- to check, with single rotation pumps, that the rotation direction is correct.
- to check that the connection between the motor and pump shaft is correct without radial or axial load.
- to avoid starting under pressure in low temperature conditions or after long period of inactivity.
- to check the fluid level in the tank
- to disconnect the return pipe and purge any air in the circuit
- to protect the pump shaft seal when painting power pack
- to use suitable systems in the return lines to tank, to avoid turbulence in the circuit and ingress of air, water or contamination
- to check the torque that must be lower than the maximum torque admissible on the pump shaft
- to use new oil filters with absence of water or any other emulsifying substance
- to avoid starting with a air-oil solution

It is important to specify an oil tank at least twice the flow from the pump.
GROUP 2 PUMPS

FLOW CHARACTERISTICS CURVES

ABSORBED TORQUE

NOTE
Above flow characteristics curves have been made considering a volumetric efficiency of 95%
PUMP CALCULATION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Displacement</td>
<td>CC / REV</td>
</tr>
<tr>
<td>Q</td>
<td>Flow</td>
<td>l/min</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
<td>kW</td>
</tr>
<tr>
<td>C</td>
<td>Torque</td>
<td>N·m</td>
</tr>
<tr>
<td>N</td>
<td>Speed</td>
<td>-15°C / +80°C</td>
</tr>
<tr>
<td>ΔP</td>
<td>Pressure</td>
<td>bar</td>
</tr>
<tr>
<td>η_v</td>
<td>Volumetric efficiency</td>
<td>0.95</td>
</tr>
<tr>
<td>η_m</td>
<td>Mechanical efficiency</td>
<td>0.9</td>
</tr>
<tr>
<td>η_t</td>
<td>Total efficiency</td>
<td>0.85</td>
</tr>
</tbody>
</table>

\[
Q = V \cdot \eta_v \cdot N \cdot 10^3 \quad \text{l/min}
\]

\[
C = \frac{\Delta P \cdot V}{62.8 \cdot N \cdot \eta_m} \quad \text{N·m}
\]

\[
P = \frac{\Delta P \cdot V \cdot N}{612000 \cdot \eta_t} \quad \text{kW}
\]