Hydraproducts Blog

Get in touch today to discuss your requirements

Call: (+44) 01452 523352

Hydraproducts Blog


All the latest news and information from Hydraproducts.

Brief History of Hydraulic Power Lyndsey Nash

Hi Everyone, here Hydra Products we have decided to start utilising our Blog more to keep you up to date, informed, and hopefully occasionally amused by our ramblings! There’s lot’s more to come but just to make sure we’re all starting on the right page we thought we’d better just give you a very brief history of Hydraulic power...

Water has played a huge part in the advancement of mankind and has been a powerful source for us to harness for thousands of years, right up to present day. Harnessing the power of water has enabled us to carve out a living using water wheels:  to produce our food, tools, wood, clothes, paper, iron, marble, cotton and wool. Today, “fluid power” or hydraulic power relies on pressurized fluid in order to produce power. It’s all around us, in everyday objects, but if we look back in time, it was a while before it was used the way it is today.

In Imperial Rome, water was used to power mills to produce flour, saw stone and timber. In Britain, water was used to extract lead from tin ore in a process known as “hushing”. Many years later this was developed into hydraulic mining which was used during the California Gold Rush.

In 1648, a young French mathematician and physicist, Blaise Pascal, made a discovery that was to become known as Pascal’s Law.  Through his works he realised that “pressure exerted anywhere in a confined incompressible fluid is transmitted equally in all directions throughout the fluid such that the pressure variations (initial differences) remain the same”. This laid the groundwork for further insights into how fluids could be harnessed for energy and in 1738, Daniel Bernoulli first formulated what was to become known as Bernoulli’s Principle which describes the behaviour of a fluid under different conditions of flow and height. This was later used in the network of high pressured water pipes between various generating stations which used steam driven pumps and mills that required power, allowing power to be transmitted over larger distances. Unfortunately this particular project did not continue for long as the development of electricity was found to be a far more convenient and, at the time, a much more suitable way of powering devices.

It was towards the end of the eighteenth century (1795) when Joseph Bramah, patented the hydraulic press. It was based on Pascal’s Law which formed the groundwork for the science of hydraulics. Not long after, the Americans developed the technique of producing electricity using hydropower and hydraulic power plants began to be built. Once the industrial revolution had firmly established itself, engineers and industrialists across the world realised they could utilise Bernouilli’s principles but on a much bigger scale. In the late 19th century, the first hydropower scheme was pioneered by William George Armstrong whom many see as the grandfather of Hydraulic Power (along with Joseph Bramah). A keen fisherman, after spending the day fishing and looking at the watermill, Armstrong decided that it wasn’t the most efficient way of harnessing energy.  Upon returning home, he set about designing a rotary engine that was to be powered by water.  When nobody showed any interest in it, he set about a redesign, and ended up with a piston engine. This led to the development of hydraulic power-pipe networks (with hydraulic power pipes being used to carry pressurised liquid to transmit mechanical power from a main power source) which were used to power cranes throughout Britain’s cities and also in Geneva, Switzerland. As time has gone on we have seen the development of different hydraulic parts including seals, control values and accumulators, all of which have lead to further uses of hydraulic power.

Today there are many different forms of hydraulic power and water power that are currently being used or developed. The majority of them generate electricity but there are a few that are mechanical. We see examples of hydraulic power in use all around us today and probably the best place to see it at work would be on a building site: diggers, cranes, bulldozers and all kinds of heavy equipment vehicles rely on power from hydraulic drives to ensure they have the power to get the job done!  A hydraulic drive is a device that uses pressurised fluid in order to drive the machinery and it is made up of many components, of which an important one is the hydraulic pump which can have a power density of up to 10 times that of an electric motor.  It’s not surprising that we are still harnessing the power of these incredible pieces of engineering more than 200 years after they were first conceived!


Hydraulic power is currently being developed further year after year. It will be extremely interesting to see what the developments will be in the future.









Comments are closed.


hpu Hydraulic Equipment hydraulic fluid hydraulic oil hydraulic power Hydraulic power packs hydraulic power units Hydraulic Pumps Hydraulic System Maintenance Hydraulic Systems Hydraulic Troubleshooting ATEX reference numbers cavitation Electrohydraulic electrohydraulics History of Hydraulics hydraproducts hydraulic Hydraulic Circuit Design hydraulic components hydraulic cylinder hydraulic cylinders hydraulic design hydraulic equipment hydraulic filters Hydraulic Fluid hydraulic fluid contamination Hydraulic fluids hydraulic hose failure hydraulic hoses Hydraulic machinery hydraulic machines hydraulic maintenance hydraulic mechanism Hydraulic motors Hydraulic oil hydraulic oil viscosity hydraulic parts hydraulic piston pumps Hydraulic Power hydraulic power pack hydraulic power pack uses hydraulic power packs hydraulic power systems Hydraulic power unit hydraulic power units hydraulic powerpacks hydraulic pumps hydraulic reservoir design Hydraulic Seals hydraulic system hydraulic system design hydraulic system failure hydraulic system maintenance hydraulic system problems hydraulic system repairs hydraulic system safety hydraulic systems hydraulic tools Hydraulic Valves hydraulics Industrial Hydraulic Power Units maintaining hydraulic systems micro hydraulic power packs micro power packs Mini hydraulic power packs oil contamination remotely operated vehicles subsea equipment subsea hydraulic power units subsea hydraulics system maintenance troubleshooting hydraulic systems